Intracellular complexes of viral spike and cellular receptor accumulate during cytopathic murine coronavirus infections.

نویسندگان

  • P V Rao
  • T M Gallagher
چکیده

Murine hepatitis virus (MHV) infections exhibit remarkable variability in cytopathology, ranging from acutely cytolytic to essentially asymptomatic levels. In this report, we assess the role of the MHV receptor (MHVR) in controlling this variable virus-induced cytopathology. We developed human (HeLa) cell lines in which the MHVR was produced in a regulated fashion by placing MHVR cDNA under the control of an inducible promoter. Depending on the extent of induction, MHVR levels ranged from less than approximately 1,500 molecules per cell (designated R(lo)) to approximately 300,000 molecules per cell (designated R(hi)). Throughout this range, the otherwise MHV-resistant HeLa cells were rendered susceptible to infection. However, infection in the R(lo) cells occurred without any overt evidence of cytopathology, while the corresponding R(hi) cells died within 14 h after infection. When the HeLa-MHVR cells were infected with vaccinia virus recombinants encoding MHV spike (S) proteins, the R(hi) cells succumbed within 12 h postinfection; R(lo) cells infected in parallel were intact, as judged by trypan blue exclusion. This acute cytopathology was not due solely to syncytium formation between the cells producing S and MHVR, because fusion-blocking antiviral antibodies did not prevent it. These findings raised the possibility of an intracellular interaction between S and MHVR in the acute cell death. Indeed, we identified intracellular complexes of S and MHVR via coimmunoprecipitation of endoglycosidase H-sensitive forms of the two proteins. We suggest that MHV infections can become acutely cytopathic once these intracellular complexes rise above a critical threshold level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The evil role of spike in the coronaviruses: structure, function and evolution

1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...

متن کامل

Ammonium Chloride as a Potential Candidate for the Treatment and Controlling of Covid-19

Coronaviruses, pathogens with a zoonotic potential, are positive sense single-stranded RNA viruses. SARS Coronavirus-2, the cause of Covid-19 infection, is from the betacoronavirinea subfamily, which has close genomic and proteomic similarity to SARS Coronavirus-1(1). Given the genomic proximity of these two viruses, studies on SARS Coronavirus-1 can be used to control or detect SARS Coronaviru...

متن کامل

Transcriptional profiling of acute cytopathic murine hepatitis virus infection in fibroblast-like cells.

Understanding the orchestrated genome-wide cellular responses is critical for comprehending the early events of coronavirus infection. Microarray analysis was applied to assess changes in cellular expression profiles during different stages of two independent, highly controlled murine hepatitis virus (MHV) infections in vitro. Fibroblast-like L cells were infected at high multiplicity in order ...

متن کامل

Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS.

Infection with SARS-CoV involves not only the respiratory tract but also the gastrointestinal tract and other organ systems. Several reports have highlighted the direct infection of haematopoietic cells by SARS-CoV. It is unclear how the virus gets into immune cells that do not express the SARS-CoV receptor angiotensin I converting enzyme 2 (ACE2). Immune-mediated infections and, in particular,...

متن کامل

Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1) Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV) and the spike protein of infectious bronchitis virus (IBV). Whereas sialic acid is the only receptor determinant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 72 4  شماره 

صفحات  -

تاریخ انتشار 1998